Problème Suite Géométriques

Posté par Paulthetall re: Problème Suites géométriques 29-03-16 à 18:50 J'ai réessayé avec une calculatrice affichant 12 chiffres à la virgule, et ça me donne U97... Il semble être logique que cette suite tende vers 8 et n'atteigne jamais 8 m à proprement parler. Posté par hekla re: Problème Suites géométriques 29-03-16 à 18:55 Bonsoir est une suite géométrique de raison et de premier terme 2 une infinité Posté par Paulthetall re: Problème Suites géométriques 29-03-16 à 19:07 Merci, et du coup, la formule est? Problème suite géométriques. Posté par hekla re: Problème Suites géométriques 29-03-16 à 19:20 c'est tout simplement le calcul de la somme des termes n+1 premiers termes d'une suite géométrique Posté par Paulthetall re: Problème Suites géométriques 29-03-16 à 19:23 D'accord, je peux simplement répondre que le décorateur peut empiler une infinité de paquets? Posté par hekla re: Problème Suites géométriques 29-03-16 à 19:45 en théorie mais il est bien entendu que les arêtes des paquets ne peuvent pas descendre en dessous d'une certaine valeur disons le mm pour qu'ils se voient Posté par Paulthetall re: Problème Suites géométriques 30-03-16 à 15:57 Dans l'absolu, il est vrai que dans la vie courante, il faut s'arrêter à un certain nombre de paquets...
  1. Étudier une suite géométrique définie par un algorithme de calcul - 1ère - Problème Mathématiques - Kartable
  2. Problème Suites géométriques - forum de maths - 688881
  3. Des situations concrètes modélisées par une suite arithmétique ou géométrique (s'entraîner) | Khan Academy

Étudier Une Suite Géométrique Définie Par Un Algorithme De Calcul - 1Ère - Problème Mathématiques - Kartable

Ce calculateur en ligne peut résoudre les problèmes de suites géométriques. En fait, il peut vous aider avec deux types de problèmes communs: Trouver le n-ième terme d'une suite géométrique suivant le m-ième terme et la raison commune. Exemple de problème: Une suite géométrique à une raison commune égale à -1 et son 1er terme est égal à 10. Des situations concrètes modélisées par une suite arithmétique ou géométrique (s'entraîner) | Khan Academy. Trouver son 8ème terme. Trouver le n-ième terme d'une suite géométrique suivant le i-ième terme et le j-ième terme. Exemple de problème: Une suite géométrique a son 3ème terme égal à 1/2 et son 5ème terme égal à 8. Trouver son 8ème terme. De la théorie et des descriptions concernant les solutions sont en-dessous du calculateur.

ProblÈMe Suites GÉOmÉTriques - Forum De Maths - 688881

Notre mission: apporter un enseignement gratuit et de qualité à tout le monde, partout. Plus de 4500 vidéos et des dizaines de milliers d'exercices interactifs sont disponibles du niveau primaire au niveau universitaire. Découvrez l'accès par classe très utile pour vos révisions d'examens! Khan Academy est une organisation à but non lucratif. Faites un don ou devenez bénévole dès maintenant!

Des Situations Concrètes Modélisées Par Une Suite Arithmétique Ou Géométrique (S'entraîner) | Khan Academy

Au 1er janvier 2020, on dépose un capital de 5000 € sur un compte dont la rémunération annuelle est de 3% (intérêts composés). On note u_n le capital sur le compte au 1er janvier 2020+ n. On arrondira les résultats au centième, si nécessaire. Quels sont les 4 premiers termes de la suite \left(u_n\right)? u_0=5\, 000\\u_1=5\, 150\\u_2=5\, 304{, }5\\u_3=5\, 463{, }635 u_0=5\, 000\\u_1=5\, 250\\u_2=5\, 310\\u_3=5\, 500 u_0=5\, 000\\u_1=6\, 500\\u_2=8\, 450\\u_3=10\, 985 u_0=5\, 000\\\\u_1=5\, 100\\u_2=5\, 200\\u_3=5\, 300 Soit n un entier naturel quelconque. Quelle est l'expression u_{n+1} en fonction de u_n? u_{n+1}=1{, }03u_n u_{n+1}=0{, }97u_n u_{n+1}=1{, }3u_n u_{n+1}=5\ 000u_n Quelle est l'expression de u_n en fonction de n? Étudier une suite géométrique définie par un algorithme de calcul - 1ère - Problème Mathématiques - Kartable. u_n=\left(1{, }3\right)^n u_n=5\ 000\times\left(1{, }3\right)^n u_n=5\ 000\times\left(1{, }03\right)^n u_n=5\ 000+\left(1{, }03\right)\times n En supposant qu'on n'ajoute pas d'argent sur le compte et que le taux de rémunération reste constant, quel est le capital sur le compte au 1er janvier 2025?

Ainsi la formule pour le n-ième terme est où r est la raison commune. Vous pouvez résoudre le premier type de problèmes listés ci-dessus en calculant le premier terme en utilisant la formule et ensuite utiliser la formule de la suite géométrique pour le terme inconnu. Pour le deuxième type de problèmes, vous devez d'abord trouver la raison commune en utilisant la formule dérivé de la division de l'équation d'un terme connu par l'équation d'un autre terme connu Ensuite, cela redevient le premier type de problèmes. Problème Suites géométriques - forum de maths - 688881. Pour plus de confort, le calculateur ci-dessus calcule également le premier terme et la formule générale pour le n-ième terme d'une suite géométrique.

July 2, 2024