Cours Mécanique Sti2D

Chapitre Résumé de cours QCM sur le cours Exercices corrigés Activités documentaires ou expérimentales L'énergie et ses enjeux Version en ligne Bouilloire ou plaque électrique? Rendement d'un moteur électrique Quelle économie avec un chauffe-eau solaire? Energie chimique Chauffage au bois ou à la bougie? Energie électrique Tension et intensité Energie et puissance électrique QCM Tension et intensité QCM Energie et puissance électriques Energie et puissance électriques Caractéristiques d'une tension alternative Puissance délivrée par un générateur Pourquoi élever une tension pour transporter l'électricité? Energie interne QCM Energie interne L'effet Joule: un rendement de 100%? Programme de physique chimie en première STI2D - phychiers.fr. Mesurer une température à distance Quelle température finale pour un mélange eau chaude eau froide? Pourquoi les glaçons sont-ils plus efficaces pour rafraîchir? Energie mécanique Mouvement, vitesse et accélération Représentation de forces Puissance et énergie mécanique QCM Mouvement vitesse et accélération QCM Représentation de forces QCM Puissance et énergie mécaniques Mouvement vitesse et accélération Relativité du mouvement Vitesse et accélération Condition d'équilibre d'un solide Comment optimiser le mouvement dans un fluide?

Cours Mécanique Sti2D Sur

Auteur et posteur: Nombre de visites sur cette page: 32215 Score au progrank: 31 Note actuelle: 9/10 noté 1 fois Vous devez être connecté(e) pour noter ( inscription). 11387 téléchargements | Voir les Tests (1) Ce cours n'a pas été mis à jour depuis 5 années. Considérez donc son contenu avec précaution car certaines parties peuvent être obsolètes. STI2D - ETT Première - Lycée de l'Europe - A2-Les actions mécaniques. Description: - Relation Puissance – Energie: Donc: (Remarque: 1Wh = 3600 J) - Puissance en mouvement de rotation: - En mouvement de translation: - Puissance électrique pour un courant continu: RENDEMENT ou: VITESSE - Conversion t/min - rad/s: - Relation entre Vitesse linéaire et Fréquence de rotation: Pa = U. I.

Cours Mécanique Sti2D Le

Quelle forme pour minimiser le Cx d'un véhicule? Mouvement de chute libre Energie d'une balle en mouvement Energie transportée par la lumière Quel rendement pour des panneaux photovoltaïques?

Cours Mécanique Sti2D Auto

Accrochez vos ceintures! 1. Que peut-on dire sur l'énergie potentielle et sur l'énergie cinétique du wagon au cours de son parcours? On souhaite analyser les variations de vitesse du wagon en terme d'échange entre énergie cinétique et énergie potentielle. 2. Proposer une découpe judicieuse du parcours. 3. Pour chaque portion, décrire l'évolution de la vitesse, analyser l'évolution de la vitesse en termes d'échanges entre énergie cinétique et énergie potentielle. Cours mécanique sti2d sur. Au sommet, la vitesse du wagon est pratiquement nulle, son énergie cinétique également. L'énergie potentielle de pesanteur est alors maximale. Lors de la descente (l'altitude h diminue), le wagon convertit progressivement son énergie potentielle de pesanteur en énergie cinétique: sa vitesse augmente. Au bas du parcours, la vitesse du wagon sera maximale, son énergie cinétique également. minimale. IV. L'énergie mécanique L'énergie mécanique d'un solide est la somme de son énergie potentielle et de son énergie cinétique: Em = Ec + Ep a. Echanges d'énergie Au cours du mouvement d'un solide et en l'absence de frottements, les énergies cinétique et potentielle s'échange de façon à garder l'énergie mécanique constante.

+ Remarques pour les vérins: - Appliquer éventuellement un taux de charge - Attention à S suivant sortie ou rentrée de tige  Page 3/4 ELECTRICITE - Loi d'Ohm: - Loi des noeuds: - Loi des mailles: La somme des intensités des courants qui entrent Dans une maille quelconque d'un réseau, la somme par un nœud est égale à la somme des intensités. algébrique des différences de potentiel le long de la qui en sortent. maille est constamment nulle. REDUCTION DE VITESSE - Rapport de réduction: - Cas d'un réducteur à engrenages cylindriques (exemple pour 2 engrènements, soit 4 roues dentées): LIAISONS ENTRE GROUPES DE SOLIDES r = Ns = ωs Ne ωe d'entrée en tr/min de sortie en rad/s Rapport de réduction d'entrée en rad/s Produit des nombres de dents des roues menées r = Z1. Z3 Z2. Z4 Produit des nombres de dents des roues menantes Tension en V Résistance en Ω Intensité en A U = R. I  Page 4/4 ACTIONS MECANIQUES - FORCES ET MOMENTS Force à distance: - Pesanteur: Force de contact: - Contact solide/solide sans frottement: - Contact solide/fluide: F = p. Cours mécanique sti2d auto. S (voir page 2) Relation entre force et moment: PRINCIPE FONDAMENTAL DE LA STATIQUE (P. F.
July 5, 2024